

Energy transfer processes in Ca₃Tb₂Si₃O₁₂:Eu³⁺

Irene Carrasco Ruiz Luminescent Materials Group. UNIVR

OUTLINE

Motivation

Sample details

Results:

- -RT luminescence experiments
- -8K-330K luminescence experiments

Conclusions

Future work

MOTIVATION

Rare earth phosphors are light-emitting materials with wide variety of applications.

Plasma display panels

White LEDs

White LEDs:
High brightness
Low energy consumption
High reliability
Long lifetime
Eco-friendly

Blue LED chip + yellow-emitting phosphor → Cool light

Cool white

Pure white

Warm white

UV-LED chip + tricolor emitting phosphors → Warm light

New phosphors to improve UV-excited white LEDs

Sensitization is a traditional way to enhance luminescence efficiency

Tb³⁺ is a very good sensitizer for Eu³⁺

Both ions exhibit absorption bands in the UV

Green emission from Tb³⁺ and red emission from Eu³⁺ have many applications in lighting and displays

Silicate phosphors:
Good transparency in UV-VIS
Favorable luminescent properties
High chemical stability
Low cost

Silico-carnotite type structure: Orthorombic space group, *Pnma*Good stability for RE doping from
Eu-Lu ions

Tb³⁺ - Eu³⁺ silico-carnotite materials are very interesting and promising for white LEDs

OBJECTIVE

Study the Tb³⁺-Eu³⁺ energy transfer processes in Ca₃Tb₂Si₃O₁₂:Eu³⁺.

METHODOLOGY

Performing luminescence and decay time experiments in $Ca_3Tb_2Si_3O_{12}$, $Ca_3Tb_2Si_3O_{12}$:Eu³⁺ and in $Ca_3Eu_2Si_3O_{12}$ powders.

SAMPLE DETAILS

Ca₃Tb₂Si₃O₁₂,Ca₃Eu₂Si₃O₁₂ and Ca₃Tb₂Si₃O₁₂:Eu³⁺ (5 mol%)

Synthesized by SSR (III TT at 1450 °C x 3h)

Homogeneus white powders.*Pure phase*

SAMPLE DETAILS

Ca₃Tb₂Si₃O₁₂,Ca₃Eu₂Si₃O₁₂ and Ca₃Tb₂Si₃O₁₂:Eu³⁺ (5 mol%)

Synthesized by SSR (III TT at 1450 °C x 3h)

Homogeneus white powders.*Pure phase*

RT EMISSION

 $Ca_3Tb_2Si_3O_{12}$ and $Ca_3Tb_2Si_3O_{12}$: Eu^{3+} : λ_{exc} =377 nm 5D_3 (Tb³⁺) $Ca_3Eu_2Si_3O_{12}$: λ_{exc} =393 nm 5L_7 (Eu³⁺)

Very efficient energy transfer from Tb³⁺ to Eu³⁺

RT EMISSION

 $\lambda_{\rm exc}$ =377 nm 5D_3 (Tb³⁺)

$$\frac{I_{7_{F_{J}}}(Eu^{3+})}{I_{7_{F_{5}}}(Tb^{3+})}; J = 2,4$$

RT EMISSION

 $Ca_3Tb_2Si_3O_{12}:Eu^{3+}$ $\lambda_{exc} = 377 \text{ nm } {}^5D_3 \text{ (Tb}^{3+}\text{)}$

 $Ca_3Eu_2Si_3O_{12}$: $\lambda_{exc} = 393 \text{ nm} {}^5L_7 (Eu^{3+})$

Eu ³⁺ concentration (%)	$\frac{Emission~Ca_3Tb_2Si_3O_{12};Eu^{3+}}{Emission~Ca_3Eu_2Si_3O_{12}}$
1	1.2
2	1.5
4	1.8
5	1.3

Enhancement of Eu³⁺ luminescent.

RT EMISSION

 $\lambda_{\rm exc}$ =393 nm 5L_7 (Eu³⁺)

No Tb³⁺ emission bands are observed under direct excitation into Eu³⁺

These results prove no $Eu^{3+} \longrightarrow Tb^{3+}$ energy transfer is present No spectral shift under different excitations.

RT EXCITATION

Only a few Eu³⁺ excitation bands are observed (labeled with *)

These results confirm the Tb³+ → Eu³+ energy transfer

RT EXCITATION

Intensity of excitation bands is enhanced, specially in near UV region

PHOTOLUMINESCENCE RESULTS RT DECAY KINETICSOF Ca₃Eu₂Si₃O₁₂ AND Ca₃Tb₂Si₃O₁₂

Short time constant probably due to energy migration along Ln³⁺ ions, because of high concentration

RT DECAY KINETICS OF Ca₃Tb₂Si₃O₁₂:Eu³⁺

$$\eta_{RT} = 1 - \frac{\tau_{Tb - Eu}}{\tau_{Tb}} = 0.94$$

Longer time constant for Eu³⁺
emission.
Very efficient Tb³⁺- Eu³⁺
energy transfer.

CIE chromaticity coordinates

Emission colour of Ca₃Tb_{2-x}Eu_xSi₃O₁₂ phosphors could be tuned effectively from green to red by adjusting Eu³⁺ concentration

TEMPERATURE STUDY OF Ca₃Tb₂Si₃O₁₂

 $\lambda_{\rm exc}$ =370 nm into 5D_3 level of Tb^{3+}

Emission

$$\Delta EA(Tb^{3+}) = 55\%$$

Decay kinetics (λ_{emi} =545 nm)

$$\Delta \tau (Tb^{3+}) = 55\%$$

Results confirm very fast energy migration among Tb³⁺ ions above 50K

TEMPERATURE STUDY OF Ca₃Tb₂Si₃O₁₂:Eu³⁺ (5%)

 $\lambda_{\rm exc}$ =370 nm into 5D_3 level of Tb^{3+}

Emission

$$\Delta EA (Tb^{3+}) = 80\%$$

$$\Delta EA (Eu^{3+}) < 10\%$$

TEMPERATURE STUDY OF Ca₃Tb₂Si₃O₁₂:Eu³⁺ (5%)

As temperature increases and energy migration among Tb³⁺ ions becomes faster, the larger is Tb³⁺ - Eu³⁺ emission ratio.

TEMPERATURE STUDY OF Ca₃Tb₂Si₃O₁₂:Eu³⁺ (5%)

 $\lambda_{\rm exc}$ =370 nm into 5D_3 level of Tb^{3+}

Decay kinetics (λ_{emi} =544 nm)

Decay kinetics (λ_{emi} =611, 702 nm)

$$\Delta \tau (Tb^{3+}) = 94\%$$

$$\Delta \tau ({}^{5}D_{0} \rightarrow {}^{7}F_{2} Eu^{3+}) = 9\%$$

 $\Delta \tau ({}^{5}D_{0} \rightarrow {}^{7}F_{4} Eu^{3+}) = 13\%$

EFFICIENCY OF ENERGY TRANSFER

$$\eta(T) = 1 - \frac{\tau_{Tb-Eu}(T)}{\tau_{Tb}(T)}$$

$$\eta(LT) = 0.51 \quad \eta(RT) = 0.94$$

Efficiency of Tb³⁺ - Eu³⁺ energy transfer is more than 90% from 100 K to 350K

CONCLUSIONS

Clear evidences of energy transfer from Tb³⁺ to Eu³⁺

Tb³⁺ emission almost quenched and very strong Eu³⁺ emission

Efficient changes in the emission colour of the material by the addition of Eu³⁺

Tb³⁺ - Eu³⁺ energy transfer enhances Eu³⁺ luminescence

Energy migration among Tb³⁺ ions enhance Tb³⁺ - Eu³⁺ energy transfer

FUTURE WORK

Experiments at higher T to test thermal stability

Decay curves for Tb³⁺ emission in 1%, 2% and 4% Eu-doped samples to stimate efficiency of the transfer

Synthesis of diluted samples in order to avoid Tb³⁺ concentration quenching

Thank you for your attention

LUMINESCENT MATERIALS LAB

